📝 Update the math formula break down description.

This commit is contained in:
凡梦星尘 2023-01-01 17:18:56 +08:00
parent dac9b379dc
commit fa0f7856bf

View File

@ -32,7 +32,10 @@ math: mathjax
{{< /note >}} {{< /note >}}
**注意:** 使用[支持的TeX功能](https://docs.mathjax.org/en/latest/input/tex/index.html)的联机参考资料。 **注意:**
- 使用[支持的TeX功能](https://docs.mathjax.org/en/latest/input/tex/index.html)的联机参考资料。
- 关于移动端公式不能自动换行问题,可使用类似 `\displaylines{x = a + b \\\ y = b + c}` 语法进行截断,具体信息可见:[mathjax-issues2312](https://github.com/mathjax/MathJax/issues/2312)
## 例子 ## 例子
@ -78,7 +81,9 @@ $$
### 乘记号 ### 乘记号
$$ $$
\displaystyle 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \displaystyle \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \displaystyle\text{ for }\lvert q\rvert < 1. \displaylines{
\displaystyle 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \\\\ \displaystyle \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \displaystyle\text{ for }\lvert q\rvert < 1.
}
$$ $$
@ -88,8 +93,8 @@ $$
### 希腊字母 ### 希腊字母
$$ $$
\Gamma\ \Delta\ \Theta\ \Lambda\ \Xi\ \Pi\ \Sigma\ \Upsilon\ \Phi\ \Psi\ \Omega \displaylines{\Gamma\ \Delta\ \Theta\ \Lambda\ \Xi\ \Pi\ \Sigma\ \Upsilon\ \Phi\ \Psi\ \Omega
\alpha\ \beta\ \gamma\ \delta\ \epsilon\ \zeta\ \eta\ \theta\ \iota\ \kappa\ \lambda\ \mu\ \nu\ \xi \ \omicron\ \pi\ \rho\ \sigma\ \tau\ \upsilon\ \phi\ \chi\ \psi\ \omega\ \varepsilon\ \vartheta\ \varpi\ \varrho\ \varsigma\ \varphi \alpha\ \beta\ \gamma\ \delta\ \epsilon\ \zeta\ \\\\ \eta\ \theta\ \iota\ \kappa\ \lambda\ \mu\ \nu\ \xi \ \omicron\ \pi\ \rho\ \sigma\ \tau\ \upsilon\ \phi\ \chi\ \psi\ \omega\ \varepsilon\ \vartheta\ \varpi\ \varrho\ \varsigma\ \varphi}
$$ $$
@ -99,8 +104,8 @@ $$
$$ $$
$$ $$
\Leftarrow\ \Rightarrow\ \leftrightarrow\ \Leftrightarrow\ \mapsto\ \hookleftarrow \displaylines{\Leftarrow\ \Rightarrow\ \leftrightarrow\ \Leftrightarrow\ \mapsto\ \hookleftarrow
\leftharpoonup\ \leftharpoondown\ \rightleftharpoons\ \longleftarrow\ \Longleftarrow\ \longrightarrow \leftharpoonup\ \leftharpoondown\ \\\\\ \rightleftharpoons\ \longleftarrow\ \Longleftarrow\ \longrightarrow}
$$ $$
$$ $$